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 The focus of this paper is towards developing a grammatical inference 

system uses a genetic algorithm (GA), has a powerful global exploration 

capability that can exploit the optimum offspring. The implemented system 

runs in two phases: first, generation of grammar rules and verification and 

then applies the GA‟s operation to optimize the rules. A pushdown automata 

simulator has been developed, which parse the training data over the 

grammar‟s rules. An inverted mutation with random mask and then „XOR‟ 

operator has been applied introduces diversity in the population, helps the 

GA not to get trapped at local optimum. Taguchi method has been 

incorporated to tune the parameters makes the proposed approach more 

robust, statistically sound and quickly convergent. The performance of the 

proposed system has been compared with: classical GA, random offspring 

GA and crowding algorithms. Overall, a grammatical inference system has 

been developed that employs a PDA simulator for verification. 
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1. INTRODUCTION  

The Context free grammars (CFG) (BNF Grammars) have been used extensively to describe the 

syntax of programming languages and natural languages. Parsing algorithms for CFGs play a significant role 

in the implementation of compilers and interpreters for the programming languages and of programs, which 

“understand” or translate the natural languages. There exist two different types of parser: top down and 

bottom up parser. Several good algorithms were proposed in literatures conduct sequential parsing of the 

context free languages (CFLs). Some of the popular parsing algorithms are CYK parsing [1, 2]; Earley‟s 

parsing [3], and Tomita parsing [15]. There are many other standard parsing algorithms also available, which 

include operator precedence parsing, predictive parsing, recursive descent parsing, non-recursive descent 

parsing, LR parsing, and LALR parsing [16]. Noam Chomsky (1956) presented a classification scheme 

known as the Chomsky hierarchy [17]. The classification scheme proposed is connected to the classification 

of automata as shown in the Figure 1, which can be used to recognize a specific language as well as the 

grammar used to recognize them. 

The problem of recognizing a language can be explained as: “let L  be any language over an 

alphabet , the problem is to design an automata M that accept an input sequence in
* . The M only 

accept the input sequence in 
* if they are valid element of L , otherwise rejects”. 

Figure 1 depicts that each class of language in the Chomsky hierarchy is generated by a specific type 

of grammar, which will then recognize by an appropriate type of automata. Moving up in the hierarchy of the 

languages, the type of automata required to recognize the language is challenging, whereas the type of 
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grammar needed to create the language becomes more general. One can see that Type 2 languages, generated 

by the CFG, are the class of languages that can be recognized by pushdown automata (equivalent to finite 

automata), have an unbounded stack available. 

 

 

 
 

Figure 1. Chomsky hierarchy 

 

 

Grammatical inference (GI) or grammar learning deals with idealized learning procedure to acquire 

grammars on the basis of the evidence about the languages [4-6], was extensively studied in [6-14] due to its 

wide fields of applications to solve the particle problems. In GI process, an individual grammar rule needs to 

be verified using an input string of a specific language over finite state controller, whereas a pushdown 

automaton is used to generate the equivalent proliferation for the language. 

This paper presents a GI algorithm combines with the genetic algorithm (GA), which has a powerful 

global exploration capability. A PDA simulator has been implemented in the computational experiment that 

employs a recursive method for the parsing that results in terms of acceptance or rejection of the string. 

The procedure for the PDA simulator has been implemented and explained with the help of examples. 

The author has implemented two points cut crossover based cyclic crossover and inverted mutation with 

random offspring then applied „XOR‟ operation for the reproduction. The reproduction operators employed 

introduces diversity in the population helps the GIGA to explore the search space adequately. The author has 

compared the performance of the proposed GIGA with three existing algorithms namely classical genetic 

algorithm (CGA) [38], random offspring generation genetic algorithm (ROGGA) [36] and crowding 

algorithm [37]. The comparative results lead to a conclusion that the proposed GIGA outperformed theses 

algorithms. 

The rest of the paper is organized as follows: Section 2 reviews the related researches on GI 

problem. Section 3 presents the CFG induction approach using GA adapted in this paper. This section shows 

the chromosome structuring, fitness function and reproduction operators that have been employed for CFG 

induction. Section 4 shows the push down automata simulator with the various methods incorporated for the 

verification purpose. The experimental setup, results and discussion on results are given in Section 5.  

Section 6 concludes the paper and assesses the future perspectives. 

 

 

2. RELATED WORK 

Gold [18] proposed the first learning model to address “Is the information sufficient to determine 

which of the possible languages is the unknown language?”, but it was suffered because sufficient 

information about the identification of correct grammar does not exist. To address the issue of [18], Angluin 

[19] proposed tell tales. Although, Gold [18] laid the foundation of learning model, but Bunke and Alberto 

[20] proposed the first usable learning model also suffered since it was unable to deal with negative data, was 

not fit for noisy data, does not suitable for a finite state machine, therefore good formal language theory was 

lost. Teacher and query learning model, also referred as an oracle was proposed in [21] is a supervised 

learning model in which an oracle knows the answer. It was found capable in answering a particular type of 

query using an inference system, but implementing an oracle is a matter of concern, which needs vast 

information, hence less commonly used, whereas Gold‟s model is more popular. 

Valiant [22] combined the best features of [18] and [21] and presented probably approximately 

correct (PAC) learning model. The PAC learning model suffered due to the following reasons: 

Type 3
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1) PAC learning assumes that the inference algorithm must learn in polynomial time under all distribution, 

but this believes is too string in reality. 

2) PAC learning is not fit for negative and NP hard equivalence results. A modified version of PAC model 

was present in [23] in which simplicity was measured using Kolmogorov complexity. 

Inductive inference is the process of making generalization from the input. Wyard [24] showed the 

impact of different grammar representation. The experimental results presented that the evolutionary 

algorithm (EA) using standard context free grammar (CFG) (Backus Naur Form (BNF)) outperformed others 

[24]. Thanaruk and Okumaru [25] classified GI into three categories: supervised, semi-supervised and 

unsupervised. Javed et. al [26] proposed a genetic programming (GP) based approach to learn the CFG. 

The work presented in [26] was the extension of the work done in [24]. A sequential structuring approach 

was proposed in [28] that perform coding and decoding of binary coded chromosomes into terminals and 

non-terminals and vice-versa. A GA based CFG induction library was proposed in [28, 29]. A case study on 

GI was proposed in [27] includes the basics of GA in which simple crossover (one and two points) and bit 

inversion mutation operators were utilized. Hrncic et al [31, 32] implemented a memetic algorithm (MA) for 

GI, which assist domain experts and software language engineers to develop domain-specific languages 

(DSLs) by automatically producing a grammar. 

Theorists and empiricists are the two main groups contributing in GI [33, 34]. Language classes and 

learning models were considered by the theorists group, whereas empiricists group dealt with practical 

problems. A detailed survey of various GI algorithms has been presented in [4], [33, 35]. 

 

 

3. GRAMMATICAL INFERENCE USING GENETIC ALGORITHM 

In this section, the author has presented a block diagram, shows the process of the GI uses GA. 

There exists different GI approaches were proposed as discussed in Section 2. The authors have implemented 

a GA based approach for CFG induction. Figure 2 depicts the block diagram for CFG induction uses a GA. 

 

 

 
 

Figure 2. Block diagram for context free grammar induction using GA. 

 

 

The overall process has been divided into two different phase. The Phase-1 is responsible for 

production rule generation and verification over PDA simulator, whereas Phase-2 shows the steps of GA 

incorporated to optimize the search process and explore the search space adequately. 

The GI process starts generating the initial random binary chromosome (BC), which is then mapped 

to appropriate symbolic chromosome (SC) representation of terminals and non-terminals in a sequential 

manner. The SC has been divided into equal block size of five equal to production rule length. Each SC has 

been traced from the start symbol „S‟ to terminal to remove use less production and rest of the productions 

have been tested for removal of left recursion, unit production, ambiguity and left factor. A string to be tested 

has been selected and passed for the validity, i.e. acceptability of the CFG equivalent to the chromosome. 
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The test string and the CFG rules are the input to the finite state controller, which verifies the acceptability 

through the proliferation on the PDA. 

 

3.1.  Chromosome Structure  

A random initial binary chromosomes (BC) consist of sequence of 0‟s and 1‟s have been created 

(see Figure 4). The BC is mapped into terminals and non-terminals in a sequential manner following 3-bit/4-

bit coding that depend on the number of symbols present in the language. If more than two symbols are used 

in the language then 4-bit representation has been used otherwise use 3-bit representation. The start symbol 

„S‟ has been mapped at “000” and „?‟ represents the null symbol mapped at “010”, whereas for others 

symbols (terminals and non-terminals) are used as appropriate.  

 

Binary chromosome: 

000100010000010010000101001111000101000110010000010011101011001000011001001110101010001

100000100010110110000001101101110 

 

Coding of terminal and non-terminals 

Non-terminals Terminals 

S  000 1100 

A001 0101 

B111 ?010 

C011 ?110 

 

Symbolic chromosome representation: S1?S??S0ABS0S??S?C0CASCAA?0?A1S1???SA00? 

 

The SC‟s are divided into block size of five equal to the production rule length as shown in Table 2, 

which are then traced from „S‟ to remove the insufficiency presents. The PDA simulator accepts test string 

and the production rules as an input for any specific language, verifies the acceptability via proliferation on 

the PDA. 

 

3.2.  Fitness Function 

The fitness of an individual has been calculated in each GA run and then selection of parent string is 

done. In GI problem, the fitness of an individual chromosome largely depends upon the acceptance 

(rejection) of the positive and negative sample strings. The fitness value increase for accepting positive (AP) 

and rejecting negative (RN) sample, whereas it decreases for accepting negative (AN) and rejecting positive 

(RP) sample. The problem specific factor (s) also plays a significant role in GA‟s performance. In case of GI, 

production rule length (PR) is an important factor, has been considered in the fitness calculation. Equation (1) 

has been applied to calculate the fitness of an individual. 

 

*(( ) ( )) (2* )Fitness C AP RN AN RP C PR          (1) 

 

The following convention has been followed for the selection of the best grammar rules: 

“A grammar that accepts all the positive strings and rejects the entire negative string from set of training data 

with minimum number of production rules”. The value of constant (C= 10) is found sufficient to 

accommodate grammar rules blocks present in the symbolic chromosome.  

 

3.3.  Reproduction Operators 

The GA‟s performance largely depends on the two most commonly used genetic operators are 

crossover and mutation. The operators‟ crossover and mutation play a significant role in the population 

diversity management and therefore improves the convergence speed. 

A variation of two point crossover based on the cyclic crossover has been incorporated to perform 

the crossover operation. The inverted mutation method has been applied with random mask. As we know the 

mutation operator introduces diversity in the population helps to keep the search process alive. Random mask 

is useful in achieving the diversity. The following convention has been applied: “simply apply “XOR” 

operation between the parent strings received after crossover operation and the random offspring”. 

An example for both crossover and mutation operations have been represented in Figure 3.  
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.    

P1 1 1 0 1 0 0 1 1 

 P11 P12 P13 

P2 0 0 1 0 1 1 1 0 

 P21 P22  P23 

    

OS1 1 0 1 0 1 1 1 1 

 P22 P13 P11 

OS2 0 1 0 1 1 0 0 0 

 P12 P23 P21 

(a) 
OS1 1 0 1 0 1 1 1 1 

         

RM 1 0 1 0 1 0 1 0 

 OS1 = OS1 XOR RM 

OS1 0 0 0 0 0 1 0 1 

(b) 

 

Figure 3. Demonstrations of crossover and mutation operations. (a) Representing the two point cut crossover 

based on cyclic crossover. (b) Inverted mutation by generating random mask (RM) and then applying XOR 

operation. 

 

 

3.3.  Verification of Rules using PDA Simulator 

This section explains the working of pushdown automata incorporated during CFG induction. 

The PDA simulator utilizes various methods for the verification purpose. The description of each method 

used in the implementation of PDA simulator is outlined below: 

PDA_Simulator (input_String, Stack): It accepts input string and stack as an input. The purpose of this 

procedure is to simulate the overall working. It uses top of stack (TOS) for the simulation purpose. 

If TOS = input symbol = $, indicate that the input string is accepted for the grammar. If TOS = Terminal and 

the first symbol matches with the symbol present at TOS, then both the symbols are removed. If TOS = non-

terminal (X), then in such situation, all the production of „X‟ replace the TOS with the right side of the 

production rule and call the PDA_Simulator() recursively. In case of non-acceptance, the selected production 

rules repeat the process for another production that starts with „X‟. 

get_input (T_input_String): It simply returns the next terminal present in the input string. 

get_Top_S (T_Stack): Returns TOS symbol present in the stack. 

remove_first_input (): It is used to remove the first symbol of the input string. 

remove_TOP_Stack (): It is used to remove TOS item from the stack. 

copy_right (T_Stack, X): It accept stack and production rules as an input. It is used to replace the TOS with 

right side of the production rule. 

verify_string (String str): This procedure is executed to take the decision about the acceptance or rejection of 

the input string “str” 

The procedure PDA_Simulator (input_String, Stack) and its associated functions definitions are 

given below: 

Procedure: PDA_Simulator (input_String, Stack) 

Begin 

 Set T_input_String = input_String 

 Set T_Stack = Stack 

 Set X = get_input() 

 Set S = get_Top_S() 

 If stack overflow() then 

 return (2) 

 End If 

 If (End_of_String && End_of_Stack) then 

 return (1) 

 End If 

 If(S == Terminal && X = = S) 

 perform remove_first_input () 

 perform remove_TOP_Stack () 

 End If 

 If(S = = non-terminal) then 

 For all production rules in P starting with S 

 If production rule is Null then 

 perform remove_TOP_Stack () 
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 Else 

 perform remove_TOP_Stack () 

 perform copy_right (S, x) 

 End For 

 End If 

 Set Found = PDA_Simulator (Temp_String, Temp_Stack) 

 If (Found = =1) Then 

 return 1 

 Else  

 return 0 

 End If 

End 

 

Procedure: get_input (T_input_String) 

Begin 

 return first symbol from T_input_String 

End 

Procedure: get_Top_S (T_Stack) 

Begin 

 return first symbol from the T_Stack 

End 

Procedure: remove_first_input() 

Begin 

 delete first symbol from the T_input_String 

End 

Procedure: remove_TOP_Stack () 

Begin 

 delete first symbol from the T_Stack 

End 

Procedure: copy_right(T_Stack, X) 

Begin 

 Copies the RHS of the production X to T_Stack 

End 

Procedure: verify_string(String str) 

Begin 

 STK = “S$” 

 STT = append “$” to str 

 Result = PDA_Simulator (str, STK) 

 Result (?) 

 Case 0: 

 Msg = “Rejected”; 

 Case 1:  

 Msg = ”Accepted” 

 Case 2: 

  Msg = “Stack overflow” 

End 

 

Computational simulation results have been shown for both the case, i.e. for the acceptance and 

rejection of the input string. The simulation result-1 represent the acceptance of the input string 

“()((()())()())((()))” in Table 1. The best possible CFG used for this purpose is <{S, M}, {(,)}, {SM M? 

M(S) M}, S>. 
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Table 1. PDA simulation result-1 for language “balanced parenthesis” for the test string “((()())()())((()))” 

BC 
0111011111010101011010010110010000010100000000000001000001010001101101100101000011001001000001

0001110001100001011100100 

SC 
C ) B ) ? )) A C A S A S S? S S (S) S? C A ? S?? ? ? S A A ? ? (A C ((C) B)?) ) A C A S A S S ? S S (S) S C A?? 

S?? ? ? S A A?? ( A C ( ( 

Splitting of SC 
C)B)? ))ACA SASS? SS(S) S?CA? S???? SAA?? (AC(( C)B)? ))ACA SASS? SS(S) SCA?? S???? SAA?? (AC(( 

Removal of unwanted rules 

C)B)? ))ACA SASS? SS(S) SCA?? S???? SAA?? (AC(( 
Rule added are: S???? SS(S) 

Rule after useless removal from terminal side: S???? SS(S) 

Removal of unwanted rules over n number of rules added are : 2 Original rules are ::8 
Rule after useless removal from S side: S???? SS(S) 

Test for recursion at: S???? SS(S) 

SC M ( S ) M M ( S ) M S ? ? M ? ? M ? ? ? ? ? S ? M ? ? ? M ? ? ? ? ? S M ? ? ? ? M ? ? ? ? ? 

Final rules induced are: SM M? M(S)M 

PDA Simulator proliferation for verification of string: ((()())()())((())) 

STRING IS ((()())()())((()))$ Stack is M$ 

STRING IS (()())()())((()))$ Stack is M)M$ 

STRING IS ()())()())((()))$ Stack is M)M)M$ 

STRING IS ())()())((()))$ Stack is M)M)M$ 
STRING IS ()())((()))$ Stack is M)M$ 

STRING IS ())((()))$ Stack is M)M$ 

STRING IS ((()))$ Stack is M$ 
STRING IS (()))$ Stack is M)M$ 

STRING IS ()))$ Stack is M)M)M$ 
((()())()())((())) string is accepted 

 

 

These grammars have been induced from the training data employing a GA in Figure 2. It can be 

seen that the input string and production rules are the input for the finite state controller, which verifies the 

string and production rules through proliferation via the PDA simulator. 

 

 

4. RESULTS AND ANALYSIS 

The computational experiments have been conducted. Net Beans IDE 7.0.1, Intel Core TM 2 

processor (2.8 GHz) with 2 GB RAM has been used. Four different types of languages of varying patterns 

have been taken, are given in Table 2. 

 

 

Table 2. Test Languages Description 
L-id Descriptions Standard Set 

L1 (10)* over (0 + 1)* Tomita /Dupont Set  

L2 All string not containing „000‟ over (0+1)* Tomita /Dupont Set 
L3 Balanced Parentheses Huijsen /Keller & Lutz set  

L4 Odd binary number ending with 1 Dupont set  

 

 

4.1.  Parameters Selection and Tuning 

The orthogonal array method has been used for the parameter selection. Orthogonal array is helpful 

in setting the well balanced experiments and Taguchi signal-to-noise ratios (SNR), which are log functions of 

the desired output, serve as an objective function for optimization that helps in data analysis and prediction of 

optimum results. Equation (2) has been used to evaluate SNR. 

 
2

1

10log
uN

u
i

u i

y
SNR

N

 
   

 


        (2) 

 

Where, i = experiment number, u = trial number, iN = number of trials for the experiment, and 

uy = number generations taken in each trials to reach to the solution. 
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Table 3. Parameter selection by orthogonal array method 
Ex. No. PS PRL CS CR MR Means Coff. Variation Std.dev. SNR 

1 120 5 120 0.6 0.5 3.56667 0.0428278 0.152753 -11.0506 

2 120 5 120 0.9 0.8 4.06667 0.0375621 0.152753 -12.1889 

3 120 8 240 0.6 0.5 3.26667 0.0467610 0.152753 -10.2884 
4 120 8 240 0.9 0.8 3.56667 0.0901276 0.321455 -11.0687 

5 360 5 240 0.6 0.8 3.50000 0.0285714 0.100000 -10.8837 

6 360 5 240 0.9 0.5 3.59000 0.0460243 0.165227 -11.1080 
7 360 8 120 0.6 0.8 3.30000 0.0606061 0.200000 -10.3809 

8 360 8 120 0.9 0.5 3.50000 0.0494872 0.173205 -10.8884 

Response for 

SNR 
(Small is better) 

Low -11.15 -11.31 -11.13 -10.65 -10.83 For (PS:PRL:CS:CR:MR= 120: 5: 120: 0.6: 0.5) 
High -10.82 -10.66 -10.84 -11.31 -11.13 For (PS:PRL:CS:CR:MR= 360: 8: 240: 0.9: 0.8) 

Delta 0.33 0.65 0.29 0.66 0.30 Delta: difference between Low: High 

Rank 3 2 5 1 4 Rank: based on delta (1: Highest and 5: Lowest) 
Suitable Combination 120 5 120 0.9 0.8 SNR (smaller is better) -12.1889 

SNR: Signal to noise ratio 

 

 

The performance of the GA is significantly affected by population size (PS), chromosome size (CS), 

crossover rate (CR) and mutation rate (MR). The performance of GA largely depends on PS, CS, CR and 

MR. In GI, production rule length (PRL) is also an important factor that affects the result. The orthogonal 

array involves five control factors with two levels: PS= [120, 360], PRL= [5, 8], CS= [120, 240], 

CR= [0.6, 0.9] and MR= [0.5, 0.8], where following setting gave the best results PS= 120, PRL= 5, CS= 120, 

CR= 0.9 and MR= 0.8 (See Table 3 experiment number 2, SNR=-12.1889) is taken for the robust process 

design and to conduct the experiments. 

 

4.2.  Performance Comparison 

The author has compared the performance of the proposed approach with CGA, ROGGA [36] and 

crowding method [37]. The same parameters setting have been used for CGA, ROGGA and crowding in the 

proposed GA. 

The CGA works using random initial population of fixed length chromosomes. It starts with a set of 

solution represented by chromosome. Using an appropriate selection technique a solution from one 

population is picked depending on its fitness and used to form a new offspring. This process repeated until 

the GA reached to the threshold or maximum number of generation. For the purpose of an evolution the CGA 

perform a onetime crossover and mutation operator for reproduction. Then individuals are picked depending 

on their fitness value to act as parents to generate offspring in the new generation.  

In ROGGA, before applying reproduction, test for similarity of the genetic material has been 

conducted – if found similar, then generate offspring – producing a random solution otherwise apply 

reproduction in normal fashion.  

De Jong (1975) introduced crowding approach to preserve population diversity which results in 

preventing premature convergence. It was applied in the survival solution step of the GA to decide which 

individual among those in the current population and their offspring individual will pass to the next 

generation. It eliminates the most similar individual whenever a new one enters in a subpopulation.  

 

4.3.  Results and Discussion 

The experimental results show that GA is capable in CFG induction. The minimum description 

length (MDL) principle has been applied and found effective in generalization and specialization of the 

training data. 

 

 

Table 4. Generated grammar with fitness value and total number of rules 

L-id Fitness Grammar V P S  , , ,  

L1 1014 <{S}, {0, 1}, {S?, S10S}, S> 

L2 1011 <{S,C,M}, {0, 1}, {SCCM, M?, M1SM, C?, C0}, S> 

L3 1014 <{S}, {(, )}, {S?, S (S)S}, S> 
L4 1012 <{S, M}, {0, 1}, {S1M, S0SM, MSM, M?}, S> 
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Table 5. Comparison based on Generation range, threshold, time consumed, mean (µ) and standard deviation 

(Std. Deviation) for each language L1 through L4 
Approach L-id Gen. Range Threshold Time (in millisecond) µ Std.Deviation 

GIGA 

L1 5±2 7 38801.1 3.4 2.5 

L2 22±11 26 3192827 18.2 6.9 

L3 8±3 18 365851.8 9.1 5.22 

L4 9±4 23 235360.3 10.8 5.41 

CGA 

L1 6±2 7 26064.1 4.1 2.73 

L2 14±10 22 2690711 17.4 6.43 

L3 8±4 12 196347 8.2 2.44 

L4 7±6 14 73749.7 8.1 3.87 

ROGGA 

L1 4±2 7 56012.3 3.9 1.8 

L2 20±12 24 3701925 25.7 10.34 

L3 7±3 13 268276.2 7.2 2.97 

L4 12±6 25 380766.3 12 8.01 

Crowding 

L1 8±6 32 359077.3 8.7 2.7 

L2 14±12 27 3688203 14.3 7.8 

L3 7±6 24 258723.1 9.8 2.5 

L4 8±6 15 80078.5 9.2 1.6 

 

 

The training set and test set, which are required for the learning has been generated with length „L‟ 

(L= 0, 1, 2, …..) such that it covers all the possible valid strings of the length L till the sufficient number of 

valid strings of corpus that has been generated. The invalid strings generated during this process are 

considered as negative strings. The resultant grammars are validated against the best known available 

grammar. The standard representation , , ,V P S   has been adapted to represent the grammars as 

presented in Table 4. The results are collected as an average of twenty runs; hence generation range has been 

used (see Table 5). The PDA simulator and its associated methods have been found effective in validating the 

strings using the resultant grammar and its equivalent proliferation on the stack. The proliferation through 

PDA simulator presented in Table 1, 2, and 3 are for best grammars received over twenty successful GA 

runs. The author has followed instantaneous descriptor “(current state, current input string, stack content)” 

for the proliferation purpose. The „$‟ symbol indicates the end of the input and bottom of the stack 

respectively. The author has shown best average fitness vs. generation chart for each language L1 through 

L4, indicates that the proposed GIGA does not showed any premature convergence. It was observed that the 

population has converged to the best value earlier in case of the simple grammars, whereas it has shown slow 

convergence for relatively complex grammar. The inverted mutation operator with random masks and then 

XOR operation introduces sufficient diversity in the population helps in avoiding premature convergence that 

is the main reason; the author has compared the algorithm with the existing GA proposed for avoiding 

premature convergence.  

 

4.4.  Statistical Analysis 
A statistical test has been performed considering the hypothesis: “there is no significant difference 

in the mean of samples at the 5% level of confidence”. Total 15 samples have been drawn from each 

algorithm for the randomly selected language. The descriptive analysis is depicted in Table 7 represents the 

minimum, maximum and average fitness. The main ANOVA result is represented in Table 6. The p- value 

0.001<0.05 leads to rejection of null hypothesis. Therefore, multiple comparison tests: TukeyHSD test has 

been adapted. The results of TukeyHSD test is depicted in Table 8 indicates that the performance of the 

GIGA is significantly better than CGA and ROGGA since the p-value 0.002 and 0.05 is either less or equal 

to the 0.05, whereas the proposed GIGA with PDA simulator perform better than the crowding method. 

Figure 4 graphically displays the average fitness value of each algorithm. The X-axis represents the 

methods and the Y-axis represents the estimated marginal average fitness. The average fitness of the GIGA is 

found better than other approaches. The CGA‟s performance has been found worst. 

 

 

Table 6. ANOVA table showing group comparison results 
 Sum of Squares df Mean Square F Sig. 

Between Groups 319382.836 3 106460.945 6.389 001 

Within Groups 933149.033 56 16663.376   
Total 1252531.870 59    
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Table 7. Descriptive analysis 

Method N Mean Std. Deviation Std. Error 
95% Confidence Interval for Mean 

Minimum Maximum 
Lower Bound Upper Bound 

CGA 15 747.9867 138.76471 35.82889 671.1413 824.8320 540.20 944.50 

ROGGA 15 759.3867 139.45049 36.00596 682.1616 836.6118 560.30 950.50 

Crowding 15 855.9933 112.48940 29.04464 793.6988 918.2879 634.80 1003.00 
GIGA 15 925.6267 123.68328 31.93489 857.1331 994.1202 615.90 1011.80 

Total 60 822.2483 145.70296 18.81017 784.6093 859.8874 540.20 1011.80 

 

 

Table 8. Multiple comparisons test (Posthoc test: Tukey HSD test) 

(I) Method (J) Method Mean Difference (I-J) Std. Error Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 

CGA 

ROGGA -11.40000 47.13580 .995 -136.2103 113.4103 

Crowding -108.00667 47.13580 .112 -232.8169 16.8036 

GIGA -177.64000* 47.13580 .002 -302.4503 -52.8297 

ROGGA 

CGA 11.40000 47.13580 .995 -113.4103 136.2103 

Crowding -96.60667 47.13580 .183 -221.4169 28.2036 
GIGA -166.24000* 47.13580 .005 -291.0503 -41.4297 

Crowding 

CGA 108.00667 47.13580 .112 -16.8036 232.8169 

ROGGA 96.60667 47.13580 .183 -28.2036 221.4169 
GIGA -69.63333 47.13580 .458 -194.4436 55.1769 

GIGA 

CGA 177.64000* 47.13580 .002 52.8297 302.4503 

ROGGA 166.24000* 47.13580 .005 41.4297 291.0503 

Crowding 69.63333 47.13580 .458 -55.1769 194.4436 

*. The mean difference is significant at the 0.05 level. 

 

 

 
 

Figure 4. Means of average fitness with respect to the algorithms (methods) chart 

 

 

5. CONCLUSION 

In this paper, the GIGA has been presented for CFG induction. The results reported provide the 

significant evidence about the performance of the proposed algorithm. The 2-level orthogonal array and the 

Taguchi method‟s SNR have been incorporated to find the appropriate parameters‟ setting that introduces 

robustness, fast convergence and statistical soundness. The author has executed the proposed GIGA for CFLs 

and regular languages of varying complexities. The experimental results have been found encouraging as the 

proposed GIGA has been found capable in CFG induction and greatly improves the performance. The PDA 

simulator has been incorporated in the experiments have been found working successfully for the light 

weight examples, which can be improved for the larger length description of the training data set. The result 

received applying proposed algorithm has been compared with other approaches indicates the superiority of 

the GIGA. The author has performed statistical tests explains the performance significance of the proposed 

approach. The current results are encouraging but it would be interesting to implement the proposed approach 
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for more complex problems and natural languages. Therefore the next goal is to implement the proposed 

GIGA for more complex problems.  
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